How to design fatigue resistance, make metal alloys more durable, sustainable

2/11/2026 Michael O'Boyle

Illinois researchers led by Assistant Professor Jean-Charles Stinville have discovered a breakthrough strategy for designing fatigue-resistant metal alloys by controlling how plastic deformation spreads at the atomic scale, potentially transforming materials used in transportation, aerospace and energy applications. By engineering alloys where deformation remains uniformly distributed rather than localized — a mechanism confirmed through advanced imaging and computational modeling — the team has opened new pathways to create metals that resist fatigue failure while maintaining strength under repeated loading cycles.

Written by Michael O'Boyle

Illinois Grainger engineers have identified a fundamental deformation mechanism that can be leveraged to greatly enhance the fatigue properties of metals, opening the door to a new strategy for designing fatigue-resistant alloys.

Metal alloys crack and fail through a mechanism called “fatigue” when repeatedly loaded and strained. While it is well known how to design alloys to withstand static loads and pressures, it is very difficult to design resistance to fatigue because it is difficult to predict how the underlying cause manifests at the atomic scale.

Researchers in The Grainger College of Engineering at the University of Illinois Urbana-Champaign have demonstrated that fatigue resistance can be greatly enhanced by controlling how metal plasticity, or irreversible deformation, localizes at small scales. It represents a new design strategy for engineering metallic alloys that are resistant to fatigue by leveraging unique deformation processes at the atomic scale.

Screenshot 2026-02-09 at 4.46.07 PM.png
Novel identified mechanisms of dynamic plastic delocalization in metal enabled by competing deformation mechanisms to significantly enhanced fatigue performance of metallic materials. 

“Transportation, space and energy all create environments where there is risk for fatigue, presenting a challenge to both safety and sustainability,” said materials science and engineering professor and project lead Jean-Charles Stinville. “Structural applications that involve high temperatures or radiation need materials resistant to fatigue, and our work shows how to design metal alloys that achieve this.”

These results were recently published in the journal Nature Communications.

Fatigue is governed by how a material accommodates plastic deformation, the irreversible rearrangement of its internal structure under repeated loading. As a material is cyclically loaded and unloaded, localized plastic deformation accumulates eventually leading to crack initiation. Paradoxically, materials engineered to withstand very high static loads often suffer from reduced fatigue resistance because their microstructure promotes strong localization of plastic deformation, accelerating damage accumulation.

“In alloys, plastic deformation tends to localize into discrete regions, which ultimately become preferential sites for fatigue crack initiation,” Stinville explained. “Because this localization emerges from complex microstructural and deformation processes interactions, it is difficult to predict where and how it will occur, making it challenging to account for during the engineering design stage.” 

Stinville and his collaborators examined whether fatigue resistance can be drastically improved by designing alloys in which plastic deformation is engineered to remain small and uniformly distributed rather than intense and highly localized.

“It makes sense intuitively, that spreading out the plastic deformation homogeneously makes reduces the impact of localized deformation, but experimentally demonstrating it was another matter,” Stinville said. “It required new technology capable of scanning large regions at very high resolution combined with theoretical support from density functional theory and ab-initio molecular dynamics simulations.”

The researchers used high-throughput automated high-resolution digital image correlation, a technique developed in Stinville’s laboratory, to map plastic deformation with unprecedented spatial resolution across large material regions. Unlike conventional methods, which must trade field of view for resolution, this approach captures fine-scale deformation over wide areas. These measurements revealed a delocalized mode of plastic deformation involving deformation processes called “dynamic plastic delocalization.” Mechanical testing showed to be directly associated with greatly enhanced fatigue resistance.

To make sense of the observed structural features, Stinville’s group collaborated with mechanical science and engineering researchers within the group of mechanical science and engineering professor Huseyin Sehitoglu, an expert in the theory and modeling of metal deformation. Computational modeling clarified the roles of chemistry and ordering on the observed delocalized plasticity in the tested materials.

Now that it has been confirmed that metal chemistry and structure can be used to generate homogeneous plasticity during deformation and therefore greatly improved fatigue resistance, the next step is exploring the potential of this result in material design strategies.

“Now that the fundamental mechanism has been identified, we can design new alloys chemistry that activates it to produce fatigue resistant alloys,” Stinville said. 

This study’s other contributors are Dhruv Anjaria, Mathieu Calvat, Shuchi Sanandiya, and Daegun You of Illinois Grainger Engineering; Milan Heczko of the Czech Academy of Arts and Sciences; and Maik Rajkowski, Aditya Srinivasan Tirunilai and Guillaume Laplanche of Ruhr Universität Bochum.

The researchers’ article, “Dynamic Plastic Deformation Delocalization in FCC Solid Solution Metals,” is available online. DOI: 10.1038/s41467-026-69046-3

Support was provided by the National Science Foundation.

Illinois Grainger Engineering Affiliations

Jean-Charles Stinville is an Illinois Grainger Engineering assistant professor of materials science and engineering in the Department of Materials Science and Engineering. He is affiliated with the Materials Research Laboratory.

Huseyin Sehitoglu is an Illinois Grainger Engineering professor of mechanical science and engineering in the Department of Mechanical Science and Engineering. He holds an Alice and Sarah Nyquist Chair appointment.


Share this story

This story was published February 11, 2026.