Research
MatSE faculty and students at the University of Illinois are making significant discoveries that will change the world, including self-healing materials such as polymer coatings that protect materials from the effects of environmental exposure.
Research Facilities
Expert faculty lead students in their maximization of the world-class research infrastructure and cutting-edge technology
Materials Research is Cross-disciplinary
Energy and Environment
This research area focuses on fundamentally understanding materials used for energy generation and storage technologies from heat engines to solar cells, as well as on materials for water purification. Studies include developing novel materials with advanced heat transport or heat resistance, understanding how these materials work at the atomic scale, and improving them.
Health and Medicine
This concentration designs, synthesizes, and fabricates novel functional materials and explores their biomedical and biological applications. Research crosses many disciplines including chemistry, physics, chemical, biological, mechanical and electronic engineering, pharmaceutical and life sciences, and computational sciences.
Mechanical Properties and Materials for Extreme Conditions
Structural applications, from airplane fuselage to car chassis to computer and cell phone cases, often call for materials that are stronger and lighter, and can maintain high performance in harsh environments. Research in this area combines experiments, numerical simulations, and modeling to improve existing materials and to develop new materials that will meet the requirements of these demanding applications.
Nanoscale Science and Technology
Nanoscale science and technology is a cross-cutting area of research that seeks advances in basic understanding of the synthesis, processing, and properties of nanoscale materials and the development of new nanoscale materials for energy, medicine, information technology, transportation, and the environment. Research utilizes multiple areas of expertise: electron microscopy and diffraction, synthesis of low-dimensional semiconductors, assembly of nanostructures into hierarchical structures, excited-state electronic structure, and transport of electronic, magnetic, and vibrational excitations at the nanoscale.
Experts in the Field
Our top-notch faculty are ready to help you navigate your coursework, provide hands-on research as well as prepare you for the next steps in your career.